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ABSTRACT
In this paper, we propose a two-stage functional principal compo-
nent analysis method in age–period–cohort (APC) analysis. The first
stage of the method considers the age–period effect with the fit-
ted values treated as an offset; and the second stage of the method
considers the residual age–cohort effect conditional on the already
estimated age-period effect. An APC version of the model in func-
tional data analysis provides an improved fit to the data, especially
when thedata are sparse and irregularly spaced.Wedemonstrate the
effectiveness of the proposed method using body mass index data
stratified by gender and ethnicity.
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1. Introduction

1.1. Literature review

The dramatic increase in the prevalence of overweight and obesity in the US population
during the past few decades has drawnmuch research attention [22]. The observed increas-
ing trend can be considered as the result of temporary variation along three dimensions: the
age trend, the secular changes, and the cohort variations. People at different ages have dif-
ferent risk for obesity. Middle-aged adults usually report the highest obesity rates. As baby
boomers proceed along the age axis, the changing age structure of theUS populationmight
explain part of the observed overall obesity trend. The other well-discussed reason for the
increased obesity prevalence is related to diet and lifestyle. The prevalence of fast food and
processed food and a diet high in sugar and salt and low in fiber are blamed for contributing
to the obesity trend [28]. The birth cohort variation of obesity has also been reported. The
Silent Generation (born in 1925–1945) and Generation X (born in 1965–1980) have been
found to have higher prevalence of obesity than the baby boomers [26]. These three tem-
poral trends are intertwined with each other and together they shape the observed overall
obesity trends. To disentangle them, the age-period-cohort (APC) model has been widely
used and discussed by a number of recent methodological innovations. An APC model
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contains the effects of age groups, periods of observation and birth cohorts. The decom-
position of the three factors usually provides a particularly clear summary of longitudinal
data; and canwell delineate temporal trends and cohort patterns. See [9,11,14,24] for recent
methodological innovations to the APC model.

APC analysis is a popular analytic approach in sociological studies allowing for a better
understanding of age, period and cohort effects. However, the main issue of concern in the
APC analysis is the non-collinearity problem. Due to the perfect linear dependency among
factors of age, period and cohort, i.e. period= age + cohort, the APC model including all
three factors suffers from the collinearity. Given any of two factors, the third factor can
be exactly computed, and all three factors cannot be simultaneously estimated in a linear
model [14]. Recently, there have beenmany statistical approaches to APCmodels for deal-
ing with the non-collinearity problem. However, different approaches based on different
subjective judgements often lead to different estimates [3]. As the analysis of APC prob-
lem is not data specific but model specific [24], there is no consensus in the literature as to
which method is optimal [3].

Longitudinal data analysis often involves in irregularly spaced and infrequent measure-
ments, resulting in an inherent difficulty in traditional parametric statistical analysis. A
flexible nonparametric data analysis approach has advantages for such data. Functional
data analysis (FDA) is a data-driven statistical technique that has beenwidely used inmod-
ern quantitative research [23]. The main idea of FDA is smoothing, which allows flexible
structure of the effects for the age, period and cohort factors [3]. There are many differ-
ent approaches of smoothing in the FDA literature; see [3,11,14,24]. The advantages of
smoothing are that a smoothing model does not suffer from the non-collinearity problem,
and providesmore accurate curve estimation for the nonlinear trend changes in the effects.

A principal component analysis (PCA) is concerned with explaining the data structure
through a few linear combination of the random variables. The general objective of PCA is
data reduction and interpretation; see [15] for more details. There are lots of PCAmethods
proposed in the APC analysis in the recent years, e.g. Yang et al. [29] and Yang and Land
[30,31]and Fukuda [4–6]. However, these methods only consider the principal component
scores as fixed effects without applying additional FDA technologies to the APC analysis
procedure. The main novelty of our work is that we introduce the mixed-effects functional
PCA method for the case of sparse and unbalanced data in the APC analysis, where the
data are considered as functional and the principal component scores are considered as
random effects. For the BMI data by gender and ethnicity, the numbers of points in period
and cohort are too small to satisfy the large sample criteria required by the maximum like-
lihood estimation of variance components. In addition, the observations are irregularly
spaced. Hence the errors in variance components could produce extra uncertainty in the
estimations. To address these problems, it is useful to apply a method of FDA to produce
more accurate estimates.

Functional data have board applicability in many fields. In contrast with traditional
statistics, the data in FDA are treated as random functions, e.g. curves. As a particular case
of FDA, functional PCA is currently under intense methodological research. Functional
PCA refers to a particular method of PCA that is applied to functions instead of vectors,
where the functions are different from vectors by the smoothness. In the recent literature,
there has been increased interest in functional PCA with mixed effects. James et al. [13]
proposed a reduced rank mixed-effects model by B-splines smoothing for the sparse data.
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Yao et al. [32] proposed a conditional expectationmethod in functional PCA in estimating
PC scores for the irregular longitudinal data. The proposed functional PCA approach is
flexible, and allows for varying patterns of observations with regard to the measurements
of the response functions.

In this paper, we consider the mixed-effects model of PCA as discussed by James
et al. [13], Ye et al. [33] and Zhou et al. [34]. The proposed model is cast into a mixed
model framework where the random effects approach in the principal component scores
is explored. The mixed-effects model in functional PCA leads to predictions of random
effects for the principal component scores. By James et al. [13], this kind of model has the
following advantages: first, it estimates the trajectories using all observed data when there
are insufficient data from each individual trajectories; secondly, the method automatically
assigns correct weight to each individual trajectories; thirdly, the method allows for indi-
vidual variationwhere the principal patterns of variation about themean curve are referred
to as the functional curves.

We advocate a functional PCA by incorporating smoothing splines in the PCA. Func-
tional PCA attempts to characterize the dominant modes of variation of a sample of
random trajectories around an overall mean function. As the measurements over age,
period and cohort are sparse and irregularly spaced for the individuals, the functional
PCA method is well-suited here. The proposed functional PCA provides data-driven esti-
mates of smoothing parameters by a mixed-effects model. To better deal with the linear
dependency among associated effects of age, period and cohort, we further propose to use
a two-stage functional PCA method for the conditional three-factor APC model [8]. This
method includes age-period analysis in the first stage and age–cohort analysis in the second
stage, and can well describe the age, period and cohort effects of the data.

Currently, there are no advanced methods that have emphasized the overall trends of
age, period and cohort simultaneously by gender and ethnicity [17,18,24,25]. One possible
reason could be that the numbers of observations in some gender and ethnicity combi-
nations are not large enough to cover the whole range of the age, period and cohort [18].
Also, the results from parametric methods in APC are not consistent and hence one can
have little faith in their validity [17]. This research paper is motivated by the fact that the
BMI data by gender and ethnicity are sparse and irregularly spaced with missing obser-
vations. Hence, it is necessary to consider them as functional data. Our paper innovates
by applying functional PCA with mixed-effects modeling to the analysis procedure, which
reflects a deeper data analysis procedure under age, period and cohort.

To the best of our knowledge, the proposed method is the first attempt to use the func-
tional PCA method to deal with the trends of age, period and cohort in APC models.
The major contributions of the paper are (1) The use of two-stage functional PCA in the
three-factor analysis is innovate. It is noted that the matrix formats are not the same in the
different stages, which is age × period in the first stage and age × cohort in the second
stage. Hence the proposed method can be considered as a combination of two two-factor
analysis problems, which can solve the non-collinearity problem in the APCmodel. Due to
the complexities of the numerical computation in the mixed-effects model, a multi-stage
or hierarchical model is usually employed for adequate estimates of the error variations
in the random effects of the model [30,31]. Hence, the proposed two-stage approach is
more likely appropriate because it is straightforward. (2) The proposed method considers
B-splines smoothing in the data analysis, which is more flexible for our data. Moreover,
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the use of FDA can overcome the non-collinearity problem caused by linear dependency
among factors of age, period and cohort. (3) The proposed method considers period and
cohort as the random effects for implementing data smoothing, which has shown to have
an advantage of dealing with the sparse and irregularly spaced longitudinal data.

1.2. Introduction of the study

The National Health Interview Survey (NHIS) provides us national representative BMI
information for US adults overtime. In this study, we focus on NHIS data collected from
1997 to 2013. Because the purpose of the study is to test our proposed APC model, we
selected a random subset of 6000 individuals from the original NHIS data which includes
millions of observations when we pooled data from 1997 to 2013. After deleting cases with
invalidweight andheight information, our analytic sample contains 5946 individuals. Body
mass index (BMI) is ameasure of relative size based on themass andheight of an individual.
If the weight is in kilograms and the height in meters, the BMI is measured by the ratio of
weight to squared height, i.e. kg/m2. In this paper, we mainly investigate the trajectories
of BMI in the study. To better understand the temporal trends and cohorts, we perform
the APC analysis for BMI. The study includes 5946 individuals with age ranging from 0 to
67 years old. Interviews conducted during period 1997 and 2013. Usually the researchers
group the age, period and cohort properties into time intervals of different lengths [31].
Becausemeaningful cohort is often considered to have a duration longer than a single year,
it will be feasible to group the cohort into a multi-year period. In the BMI data, the cohort
is from 0 to 14, i.e. it is grouped into 5-year intervals by rounding (period − age −1940)/5
to the nearest integer. In the study, we mainly focus on the analysis of the data stratified
by gender and ethnicity. Over the 5946 individuals, there are 126 female Asians, 116 male
Asians; 483 female Blacks, 328male Blacks; 588 female Hispanics, 434male Hispanics; and
2134 female Whites, 1737 male Whites.

Longitudinal data stratified by gender and ethnicity are usually sparse within subgroups.
One of the major merits of our proposed model is its capacity of analyzing sparse data.
Although pooling groups together will reduce the sparseness of the data, there are rea-
sons that we are cautious about pooling ethnic groups together. First, previous research has
established significant differences in the prevalence of overweight and obesity across ethnic
groups [21]. Asians were found repeatedly to have a lower average BMI than other ethnic
groups [18]. Black females had the highest level of prevalence of obesity [21] and those from
Hispanic origin had the fastest rate of BMI increase over the past two decades [18]. Sec-
ondly, weight status is closely linked to diet, culture and lifestyles. Difference ethnic groups
were influenced by different culture and ethnic life styles. Due to the large scale of immi-
gration from Asia and Latin America over the past few decades, the increasing supply of
ethnic goods for Asian andHispanicsmight impact the periodical trends for these two eth-
nic groups particularly. Hence, we are reluctant to pool ethnic groups together and assume
similar trends across ethnic groups. AlthoughNHIS uses nationally representative samples,
with pooled data, the dominant ethnic group will have greater influence on the detected
results and the pooled results will not be representative to ethnic groups of smaller size.

We develop functional PCA for the analysis of individual trajectories from sparse and
irregular observations, and aim at a flexible nonparametric FDA approach. It is necessary
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to consider the observations as functional data when the number of observations is not
large enough to cover the whole range of the age, period and cohort.

Table 1 and 2 show the numbers of individuals, the related unique observations and
missing observations under the matrices of age × period (i.e. 68 × 17) and age × cohort
(i.e. 68 × 15) by gender and ethnicity. It is noted that sum of the number of unique obser-
vations and the number of missing observations is 1156 under age × period and is 1020

Table 1. The numbers of individuals, the related unique observations and missing observations under
the matrix of age× period (i.e., 68 × 17) by gender and ethnicity.

Individuals Unique observations Missing observations

Females Males All Females Males All Females Males All

All 3331 2615 5946 1061 111 1133 95 172 23
Asians 126 116 242 115 282 207 1041 1045 949
Blacks 483 328 811 383 346 564 773 874 592
Hispanics 588 434 1022 431 868 613 725 810 543
Whites 2134 1737 3871 950 984 1101 206 288 55

Table 2. The numbers of individuals, the related unique observations and missing observations under
the matrix of age× cohort (i.e., 68 × 15) by gender and ethnicity.

Individuals Unique observations Missing observations

Females Males All Females Males All Females Males All

All 3331 2615 5946 273 270 273 747 750 747
Asians 126 116 242 98 109 141 922 911 879
Blacks 483 328 811 209 186 243 811 834 777
Hispanics 588 434 1022 210 189 240 810 831 780
Whites 2134 1737 3871 270 268 273 750 752 747

Figure 1. The observed BMI measurements of females in ages (large dots) and trajectories (dot lines)
under different periods for Asians. Panels (a)–(q) are the observed BMI measurements in ages and tra-
jectories from 1997 to 2013. Panel (r) is the observed BMI measurements in ages and trajectories for all
17-year periods. In each panel, y-axis is the BMI measurement and x-axis is the age.
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Figure 2. The observed BMI measurements of males in ages (large dots) and trajectories (dot lines)
under different periods for Asians. Panels (a)–(q) are the observed BMI measurements in ages and tra-
jectories from 1997 to 2013. Panel (r) is the observed BMI measurements in ages and trajectories for all
17-year periods. In each panel, y-axis is the BMI measurement and x-axis is the age.

under age× cohort. As the number of individuals decreases, the data set will becomemore
sparse with more missing observations. As examples, Figure 1 and 2 show the observed
BMI measurements of females and males in ages (large dots) and trajectories (dot lines)
under different periods for Asians. It is seen that the ages are sparse and irregularly spaced
under different periods for Asians. The data set for any other ethnicity shows similar pat-
terns. When the data are measured on a fine grid of equally spaced points, the problem
can be solved by applying the standard PCA. However, if the data are sparse with measure-
ment at irregularly spaced points as given in Tables 1 and 2 and Figures 1 and 2, we need
to impose functional PCA in the data analysis procedure.

1.3. Organization of the paper

The rest of the paper is organized as follows: In Section 2, we introduce basic concepts
and definitions of the proposed two-stage functional PCA method. Application of our
method to BMI data is in Section 3. Section 4 discusses the proposed method and gives
the conclusion.

2. Method

In the proposed model, the age variable is parameterized as fixed effects, while the period
and cohort variables can be parameterized as random effects. Since the range of the age
categories is fixed and can be regarded as unique, we specify the age effects as fixed [24]. On
the other hand, the time period and cohort categories are available for any specific analysis,
typically are only samples from the population, we specify the period and cohort effects as
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random [24]. The proposed two-stage functional PCAprovides estimates for a three-factor
APC model. In the first stage, we estimate the age-period model; in the second stage, we
consider the residual age–cohort effect conditional on the already estimated age-period
effect [8].

Data smoothing for functional data attracts substantial interests recently for modeling
sample trajectories. There aremany data smoothingmethods in FDA.We choose B-splines
smoothing because it is well known for providing good approximation to smooth functions
and its application in nonparametric smoothing is board [2,13]. The model uses a set of
B-splines basis functions to represent the smoothed trajectories. Other choices of smooth-
ing such as truncated power basis smoothing can in principal be used, but B-splines
smoothing is preferable in the current context because it is in particular convenient and
numerical stable [12,34].

2.1. Summary of themethod

We mainly address APC analysis by a new two-stage functional PCA method. In the pro-
posed method, we first describe the fixed age effect by a B-splines function, then the
remaining term is described as two-stage functional PCA for both period and cohort. In
the two-stage functional PCA, we consider the APC decomposition using principal com-
ponents. The description of the eigenfunctions leads to more interpretable results. The
random fluctuations in periods and cohorts are reliably described by the B-splines eigen-
functions. In the first stage, we perform functional PCA for the age–period effect. In the
second stage, we consider the residual age–cohort effect conditional on the already esti-
mated age–period effect. Hence the mixed effects for both period and cohort are included
in a model with the fixed age effect. We capture all effects by B-splines curves in the model.

The proposed functional PCA model with B-splines has its advantage that it is well
conditioned in the APC analysis [9]. Since the range of the age categories is fixed and
can be regarded as unique, we specify the age effect as fixed [24]. On the other hand,
the time period and cohort categories are available for any specific analysis, typically are
only samples from the population, we specify the period and cohort effects as random
under fixed trends [24]. Since both the fixed effect of age and mixed effects of period and
cohort are assumed to be nonlinear by the B-splines, the curve fitting approach resolves
the non-collinearity problem in the APC analysis [16].

2.2. FDA in the APC analysis

The main advantage of nonparametric over parametric models is their flexibility. The
curve fitting approach in FDA involves smoothing curves with sparse and unbalanced data,
which is well suited for our BMI data. In functional PCA, as long as we include enough of
a number of spline basis, the placement of knots is not critical for the performance of the
estimations. The B-spline basis functions are flexible enough to capture the patterns of
the data. Please see James et al. [13], Ye et al. [33] and Zhou et al. [34] for more detailed
discussions. To simplify the data analysis in the proposed method, we define the B-spline
basis on equally spaced knots. Given the nature of the functional data in our analysis, 6–12
knots is often sufficient. In the FDA, we choose a cubic B-spline basis {φl(t) : 1 ≤ l ≤ L}
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with equally spaced knots, so that β(t) = ∑L
l=1 βlφl(t). In the mixed-effects model frame-

work, the fixed effect models the mean curve of the trend and the random effect allows
for variations around the trend. The spline smoothing is performed for both the fixed and
random effects. In our APC analysis, any random fluctuations in periods and cohorts will
be reliably described and interpreted [1].

2.3. Functional PCA in the APC analysis

The main tool in FDA is functional PCA, where the observed trajectories are decomposed
into a mean trend function and eigenfunctions, and the predictions of the functional prin-
cipal component scores can serve as the random effects in the model. The functional PCA
allows us to achieve the following three major goals [7]: Summarizing the data by a few
functional principal components by dimension reduction of the functional data; estimat-
ing the functional principal components from sparse and unbalanced data; further analysis
based on functional principal components scores.

Let N denote the number of study individuals. For the ith individual, let Yi(t) =
{Yi(tij), j = 1, . . . , ni} be the trajectory, tij be the observation times within the time inter-
val T , and ni be the total number of such observation times. We consider a generalized
functional mixed model, and assume that longitudinal observations Yi(t) are realizations
of the canonical exponential family [19]. with a probability density or mass function

f (Yij|θij,φ) = exp
[

1
a(φ)

{Yijθij − b(θij)} + c(Yij,φ)
]
, (1)

where θij is the canonical parameter andφ is a dispersion parameter.Denoteμij as themean
of Yij, then μij is the first derivative of b(·) at θij, i.e. μij = b(1)(θij). The inverse function
of b(1)(·), denoted as g(·), is the canonical link function, see [19] for the details of the
model. Under the assumption that BMI data are Gaussian trajectories, we consider the
longitudinal process Yi(t) = Xi(t)+ εi(t), where the independent random error εi(t) ∼
Normal(0, σ 2

ε ), and Xi yields a standard Karhunen–Loève expansion

Xi(t) = μ(t)+ ψ(t)Tξi, for t ∈ T , (2)

where themean functionμ(t) = E{Xi(t)} represents the overall mean,ψ = (ψ1, . . . ,ψp)
T

is a vector of orthonormal functions also known as the eigenfunctions, the random
vector ξi = (ξi1, . . . , ξip)T ∼ Normal(0,Dξ ) are the principal component scores, Dξ =
diag(d1, . . . , dp) and d1 ≥ d2 ≥ · · · ≥ dp > 0 are the eigenvalues. The number of princi-
pal components p will be chosen by a data-driven method. In theory, there can be infinite
number of principal components, but p is often assumed to be finite for practical consid-
erations. With the method of functional PCA, it is particularly important to identify the
number of principal components. Some criteria have been proposed to determine the num-
ber of principal components. James et al. [13] discussed two natural approaches. The first
approach is to calculate the proportion of variance explained by each principal component;
and the second approach involves calculating the likelihood for the model as the number
of principal components varies. The accuracy check found that the first approach worked
well on a simulated data set [13]. Hence, we choose the first approach in our data analy-
sis and determine the number of the principal component by the proportion of variance
explained by the principal components.
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In functional PCA method, we approximate the unknown functions μ(t) and ψ(t)’s
by B-splines [13,34]. Let B(t) = {B1(t), . . . ,Bq(t)}T be a q-dimensional B-spline basis
defined on equally spaced knots in T , θμ be a q × 1 vector and 	ψ = (θψ1, . . . , θψp)
be a q × p matrix of spline coefficients, then the unknown functions are represented as
μ(t) = B(t)Tθμ and ψT(t) = B(t)T	ψ . The general recommendation for choosing q in
the literature is choosing a relatively large number q � p. As the number of functional
principal components is relatively small in our APC applications, the number of basis func-
tions q is usually selected to be a moderate number in the range of 6−12. The original
B-spline basis functions are not orthonormal, therefore, we employ the procedure pre-
scribed by Zhou et al. [34] to orthogonalize them so that

∫
B(t)B(t)Tdt = Iq, where Iq

is a q × q identity matrix. Under this construction, the orthonormal constraints on ψ(t)
translate to constraints on the coefficients, i.e.	T

ψ	ψ = Ip. Then themodel takes the form

Xi(t) = B(t)Tθμ + B(t)T	ψξi, subject to	T
ψ	ψ = Ip. (3)

The proposed functional PCA model is data adaptive, which does not require pre-
specified functional forms for longitudinal trajectories [7,32]. Under the definition of the
exponential family, the longitudinal observations could be either continuous or discrete
types, such as Gaussian, binomial or Poisson outcomes. By introducing a latent Gaussian
process model for any types of observations, we establish a connection to the generalized
FDA model.

2.4. Two-stage analysis

We consider a two-stage analysis in functional PCA, which provides estimates for the
three-factor APC model [8]. We perform the age–period association model at first, and
then consider the residual as the age–cohort effect conditional on the already estimated
age–period effect, which is considered as an offset. Following the general guidelines in [8],
the proposed mixed-effects model is

Yi = Xiage + Xiperiod + εiresidual1 = Xiage + Xiperiod + Xicohort + εiresidual2 , (4)

where Xiage , Xiperiod , Xicohort are defined as

Xiage(tiage) = B(tiage)
Tθμage , (5)

Xiperiod(tiperiod) = B(tiperiod)
Tθμperiod + B(tiperiod)

T	ψperiodξiperiod , (6)

Xicohort(ticohort) = B(ticohort)
Tθμcohort + B(ticohort)

T	ψcohortξicohort . (7)

In the first stage of functional PCA, we consider both age and period trends as the
fixed effects and the age–period effect as the random effect. The age–period association
model is

Yistage1 = Xiage(tiage)+ Xiperiod(tiperiod)+ εiresidual1 . (8)

In the second stage of functional PCA, we consider the residual effect conditional on the
already estimated age–period effect, i.e., Yistage2 = εiresidual1 . We apply the functional PCA to
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the conditional age–cohort effect, leading to the model in the second stage as

Yistage2 = Xicohort(ticohort)+ εiresidual2 . (9)

Under this approach, the age–cohort-dependent principal components are modeled as
random walk time series, conditional on the age–period effect [8].

2.5. Implementation of themethod

The study is to examine the effects of BMI in diverse gender groups including Asians,
Blacks, Hispanics andWhites. The measurements of age, period and cohort are sparse and
irregularly spaced and may differ widely across the individuals. As BMI is a continuous
measurement, the FDA enables prediction of individual smooth trajectories for the mea-
surements. Hence the functional PCAmethod is feasible to handle the special longitudinal
data. We implement functional PCA at two stages to solve the non-collinearity problem in
the APC model.

The algorithms for performing functional PCA include the expectation–maximization
(EM) algorithm [13] and the conditional expectation algorithm [32]. In the EM algorithm,
the random effects, which are the principal component scores in the model, are treated as
missing values, and parameter estimations are based on expectation steps and maximiza-
tion steps alternatively. In functional PCA, the mixed-effects model can be considered as
a reduced rank mixed-effects framework [33]. The reduced rank fitting procedure con-
siders a rank constraint on the principal component scores and attempts to estimate the
principal component curves by the EM algorithm. In functional PCA, the random rank
model is a kind of mixed-effects model which focuses on a small number of leading prin-
cipal component by B-splines. Another algorithm in functional PCA is the conditional
expectation algorithm proposed by Yao et al. [32]. This method represents the continu-
ous trajectories through the Karhunen–Loève expansion, determining the eigenfunction
from the data. The conditional expectation algorithm is straightforward and works well
in the presence of sparse and irregular longitudinal data under the Gaussian assumption.
In the proposed method, the calculations of functional PCA take advantages of the two
algorithms. We first perform the conditional expectation algorithm [32] to get the eigen-
values and eigenfunctions, then further use the idea of reduced rank model to smooth the
trend and eigenfunctions by B-splines, where the principal components are subject to the
orthogonality constraint. We determine the number of the principal component by the
proportion of variance explained by the principal components.

To get tractable answers, we have made the assumption that the dependent variable is
Gaussian among the observations. This assumption is both technically and practically rea-
sonable in the application of BMI data analysis. Under this assumption, we consider a lon-
gitudinal process with a standard Karhunen–Loève expansion, which is the PCA in a con-
tinuous domain. However, if the data set is not Gaussian due to its nature, we can consider
it as latent Gaussian and easily transform it by a link function under the exponential family.

3. Results

In the APC analysis of the BMI data described in Section 1.2, we consider the observed
data as random curves. The functional PCA method attempts to characterize the random
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Figure 3. Different trends of the fixed-effect curves by gender and ethnicity. Panels (a) and (d) are the
fixed age effect curves for females and males by ethnicity, where the age ranges from 0 to 67 years
old; Panels (b) and (e) are the fixed period effect curves for females and males by ethnicity, where the
period ranges from 1 to 17, corresponding to years 1997–2013; Panels (c) and (f ) are the fixed cohort
effect curves for females andmales by ethnicity, where the cohort ranges from 0 to 14, corresponding to
rounded values of (period− age−1940)/5.

trajectories around the overall mean trend functions.We represent the trajectories directly
through the standard Karhunen–Loève expansion, determining the eigenfunctions from
the data. The smooth estimates of the trajectories describe the trends of age, period and
cohort at discrete points by gender and ethnicity. We case our approaches into smoothed
mixed-effects models. The age effect is described by a fixed age trend curve from 0 to 67
years old (Figure 3). The period effect is described bymixed effects in the age–period asso-
ciation model at the first stage. The curves are decomposed as the sum of a fixed period
trend curve from 1 to 17 (i.e. years 1997–2013) and random deviations from the trend
period curve. The deviations are subsequently summarized by a few smoothed eigenfunc-
tions extracted from the period trend subtracted data. The cohort effect is described by
mixed effects in the age–cohort conditional association model at the second stage. The
curves are decomposed as the sum of a fixed cohort trend curve from 0 to 14 and random
deviations from the trend cohort curve. The deviations are subsequently summarized by a
few smoothed eigenfunctions extracted from the cohort trend subtracted data.

Figure 3 reveals the different trends of the fixed-effect curves by gender and ethnicity.
Panels (a) and (d) in Figure 3 are the fixed age effect curves for females and males by eth-
nicity. There is a clear indication of an age-specific trend. The curvature trend has a change
point occurred at 46 for all females and at 40 for all males. The age effects are quite sub-
stantial, especially in the females. The overall means of Asians and Whites are below the
average of all females; and the overall means of Blacks and Hispanics are above the aver-
age of all females (Figure 4(a)). The peaks are reached at ages 48, 48, 37 and 51 for Asians,
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Figure 4. First three eigenfunctions over period effect by gender and ethnicity. Panels (a)–(c) are
the results for females; and panels (d)–(f ) are the results for males. The period ranges from 1 to 17,
corresponding to years 1997 to 2013;

Blacks, Hispanics andWhites, respectively, among the females. Formales, the shapes of the
curves are a little bit different from those in females. The overall means of Blacks, Hispan-
ics and Whites are close to the average of all males; and only the mean of Asians is below
the average of all males (Figure 4(d)). The peaks are reached at ages 44, 32, 40 and 40 for
Asians, Blacks, Hispanics and Whites, respectively.

Panels (b) and (e) in Figure 3 are the fixed period effect curves for females and males by
ethnicity. Both females and males have increasing trends. However, the trends in females
are more substantial. The trend of all females has a change point at around 13 (i.e. year
2009); and the trend of all males has a change point at around 16 (i.e. year 2012). In
females, the trend curves of different ethnicity are more stable and the shapes are sim-
ilar (Figure 3(b)). The peaks are reached at periods 12, 15, 16 and 12 (i.e. years 2008,
2011, 2012 and 2008) for Asians, Blacks, Hispanics and Whites for the females. Among
males, the trend curves of different ethnicity are quite different (Figure 3(e)). The peaks
are reached at periods 17, 15, 16 and 10 (i.e., years 2013, 2011, 2012 and 2006) for Asians,
Blacks, Hispanics and Whites.

Panels (c) and (f) in Figure 3 are the fixed cohort effect curves for males and females
by ethnicity. It is noted that there are no clear substantial trends for all females and males.
However, for Hispanic females and Black females andmales, there are periodicity patterns.
Curvature patterns are observed for Asian females and males.

Tables 3 and 4 describe the proportion of variance associated with each of the first three
principal components by gender and ethnicity. It is noted that for all gender and ethnicity
groups, the first three principal components explainmore than 85% of the variance in BMI.
Especially, compared with the second and third components, the first principal component
explains more than 47% of the variance in each ethnic group.
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Table 3. In the first stage of functional PCA, the percentage variances of the first three principal
components for the related individuals by gender and ethnicity.

PC Index Females PC1 PC2 PC3 Males PC1 PC2 PC3

All 1.0000 0.4722 0.3696 0.1172 1.0000 0.7868 0.2105 0.0027
Asians 1.0000 0.9307 0.0647 0.0046 0.9997 0.9745 0.0217 0.0035
Blacks 0.9981 0.4900 0.3407 0.0983 0.9996 0.9324 0.0473 0.0199
Hispanics 0.9999 0.6085 0.2767 0.0940 0.9668 0.7617 0.1490 0.0561
Whites 1.0000 0.5829 0.1818 0.1289 0.9869 0.6616 0.2521 0.0732

Table 4. In the second stage of functional PCA, the percentage variances of the first three principal
components for the related individuals by gender and ethnicity.

PC Index Females PC1 PC2 PC3 Males PC1 PC2 PC3

All 0.9590 0.4722 0.3696 0.1172 1.0000 1.0000 < 0.0001 < 0.0001
Asians 1.0000 0.9307 0.0647 0.0046 0.9992 0.7233 0.2586 0.0173
Blacks 0.9290 0.4900 0.3407 0.0983 0.9805 0.4751 0.3467 0.1587
Hispanics 0.9792 0.6085 0.2767 0.0940 0.9919 0.7771 0.1800 0.0348
Whites 0.8936 0.5829 0.1818 0.1289 0.8507 0.5058 0.2121 0.1328

Figure 5. First three eigenfunctions over cohort effect by gender and ethnicity. Panels (a)–(c) are
the results for females; and panels (d)–(f ) are the results for males. The cohort ranges from 0 to 14,
corresponding to rounded values of (period− age−1940)/5.

Figures 4 and 5 reveal the first three eigenfunctions in period and cohort by gender and
ethnicity. The eigenfunctions correspond to the effects of different level shifting from the
overall trend curve; they reflect variations about the trend curve over the period or cohort
effect. Since the first principal component is the most important, the first eigenfunction
essentially yields a summary statistics that is comparable with the fixed trend in the period
effect or the cohort effect. The second and third eigenfunctions show more periodicity in
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the period and cohort. Compared with the first eigenfunction, they explains less variance
in the BMI data and can be viewed as correction factors from the first principal component.
From Figures 4 and 5, it is seen that the first eigenfunctions for females are different from
those for males, reflecting the different variations over the period or cohort effect.

4. Conclusion, discussion and future work

4.1. Conclusion

In this paper, we have investigated a new approach to APC analysis and applied this
approach to the BMI data by gender and ethnicity.We propose the use of a two-stage func-
tional PCAmethod to describe the variability in longitudinal data in order to obtain more
accurate estimates. The proposed newmethod adds a great degree of flexibility in the APC
model using a nonparametric model structure. Incorporating the functional PCAmethod
in the APC analysis improves the statistical and numerical stability of the estimations. The
principal patterns of variations about the trend curves are described by the different eigen-
functions. The use of random effects adds flexibility of the estimates during the period
or cohort when there are variabilities among the individuals, which reduces the random
trajectories to a set of functional principal component scores. Our results show that the
functional PCAmethod works well for the BMI data. The method is especially suitable for
data with sparse and irregularly spaced measurements over age, period and cohort. The
two-stage approach in functional PCA resolves the non-collinearity problem in the APC
analysis and shows its capability to reveal the three-way structure in the age, period and
cohort effects.

4.2. Discussion and future work

It is noted that the random effects in the proposed model are new style random effects for
implementing data smoothing in FDA [10]. Compared with the old style random effects,
the new style random effects do not meet the traditional definition of random effects [27].
We understand that the new style random effects are simply tools for estimating ensem-
bles of fixed but unknown quantities [10]. In the classic linearmixed-effectsmodels, the old
style random effects are integrated out and the fixed effects are estimated using marginal
likelihood [20]. However, the functional mixed-effects models with new style random
effects mainly focus on nonlinear spline smoothing, which are different from the classic
linear mixed models. The new style random effects are not integrated out, but instead are
conditioned upon in an additive multi-step procedure. Thus, these conditional random
effects behave like the fixed effects, but further provide smoothed estimates for specific
individuals [20].

In the APC models, there is always a non-collinearity problem in parameter estima-
tions of age, period and cohort. The proposed two-stage function PCA method has two
advantages in the APC analysis: the first is to deal with the non-collinearity problem by
smoothing; the second is to impute the missing data from predicted trajectories. Because
the purpose of the study is to understand the relationship of age, period and cohort, the
two-stage method reasonably approximates the relationship by the method of conditional
expectations.
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In APC analysis, the observed data are always measured by age and period initially; and
then the data under cohort are calculated by the relationship of age, period and cohort.
Although there is a perfect linear relationship among the three factors, i.e. period = age+
cohort, the researchers group the age, period and cohort properties into time intervals of
different lengths in practice. Since meaningful cohort is often considered to have a longer
duration, it is usually grouped fromage and period by a rounded integer during the analysis
procedure. For example, the cohort is grouped by rounding (period − age − 1940) / 5 to
the nearest integer in our paper. As the data under cohort are always calculated from the
data under age and period, it makes more sense to consider the estimation of period as an
earlier stage than the estimation of cohort. Hence, the researchers usually consider an APC
model in the APC analysis.

Theoretically, when the data are regularly spaced over age, period and cohort and
with a perfect linear relationship, the estimated results could be virtually the same if
we revise the order of period and cohort in the two stages, i.e. changing APC model to
age–cohort–period (ACP) model. Practically, the estimated results may have some kinds
of differences in the APCmodel and ACPmodel depending on how the cohort is grouped
from age and period and how many degrees of smoothness are performed for the sparse
and irregularly spaced data.

Since a two-stage model might result in biased estimates of the conditional effects,
the joint model approach can get better estimates because it aims to model the effects of
age, period and cohort simultaneously. In the joint model approach, some parameters of
the model need to be considered as missing values and the calculation of the integration
will be approximated by a numerical approach. Hence, the Monte Carlo method and EM
algorithm are typically employed to solve the problem in the joint modeling [13,33,34].
Because the joint model approach is more complex than the two-stage approach outlined
in the paper, it is unknown whether any bias or undercoverage in the two-stage methods
is large enough to warrant this extra modelling complexity. In our future work, we will
compare the bias and efficiency of on two-stage approach and joint model approach under
different assumptions in simulated data sets.

The bootstrap method can be used to produce pointwise confidence intervals for the
overall mean function and the principal components. In the bootstrap, we resample the
real data with replacement, fit the model to the bootstrap samples using the same analysis
procedure as for the real data, and estimate the standard deviations of the estimators using
their replicates pointwisely. However, the estimators are less informative because the data
are too sparse in the resampling. Given the nature of the sparse and irregularly spacedmea-
surements and typically low signal-to-noise ratio in the data, some statistical smoothing
methods need to be carefully chosen during the analysis procedure. How to best resample
the sparse data will be considered in our future work.
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